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We introduce Chai-1, a multi-modal foundation model for molecular structure prediction that per-forms at the state-of-the-art across a variety of tasks relevant to drug discovery. Chai-1 can optionallybe prompted with experimental restraints (e.g. derived from wet-lab data) which boosts performanceby double-digit percentage points. Chai-1 can also be run in single-sequence mode without MSAswhile preserving most of its performance. We release Chai-1 model weights and inference code as apython package for non-commercial use and via a web interface where it can be used for free includ-ing for commercial drug discovery purposes.
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1 Introduction

Understanding the three-dimensional structure of biological molecules is critical for studying how they func-tion and interact [1, 2, 3]. This understanding, in turn, is foundational to designing therapeutic moleculestargeting the cellular machinery of life [4, 5]. Over the last few years, significant progress has been madeusing deep learning methods to predict the folded structures for proteins [6, 7, 8] and nucleic acids [9]. Morerecently, methods like RoseTTAFold All-Atom [10] and AlphaFold3 [11] have introduced models that can pre-dict a wide range of protein and nucleic acid structures, covalent modifications thereof, and small moleculeligand interactions with these complexes.
Here we introduce Chai-1, a state-of-the-art and openly accessible foundation model for biomolecular struc-ture prediction. We demonstrate that Chai-1 excels on a variety of tasks including protein-ligand structureprediction and protein multimer prediction. Furthermore, while Chai-1 is designed to predict biopolymerstructures directly from raw sequence and chemical inputs, it can optionally be prompted with experimentalconstraints such as those provided by epitope mapping or cross-linking mass spectrometry experiments toachieve even more accurate predictions of difficult binding complexes. Chai-1 performs best when given mul-tiple sequence alignments (MSAs), but can also produce strong predictions without MSAs in single sequencemode. In single sequence mode, Chai-1 outperforms ESMFold, and can even outperform AF-Multimer2.3[12] – which we evaluate with MSAs – under certain evaluations.
Chai-1 model weights and inference code are available for non-commercial use1. We also provide a webserver for interfacing with themodel, which is made available for commercial use (including for drug discoverytasks).
2 Results

2.1 Model Architecture
Our model architecture and training strategy largely follows that of Abramson et al. [11] with the key dif-ference that we train a single model with a training data date cutoff of 2021-01-12 as opposed to training

1https://github.com/chaidiscovery/chai-lab/
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Figure 1 Overview of the Chai-1 model architecture and input features. Chai-1 accepts a wide variety of optional inputfeatures, such as language model embeddings, structural templates, genetic search, and wet-lab experimental data suchas contacts determined by cross link mass spectrometry or epitope mapping.

separate models for separate evaluations. We also make a number of key additions to enable new function-ality, summarized below.
2.1.1 Language model embeddings

Protein structure predictionmodels like Chai-1 are typically trainedwithmultiple sequence alignments (MSAs)to capture co-evolutionary information. Over the past few years, a number of language models have beenintroduced and shown to enable accurate prediction of protein structure. However, these models have yetto demonstrate actionable performance on multimeric prediction or protein-ligand interactions. To enablestrong single-sequence capabilities in Chai-1, we add an additional input track consisting of residue-levelembeddings from a large protein language model [13, 14, 8]. At inference time, we find that this enablesaccurate prediction across the full suite of tasks.
2.1.2 Constraint features

We also add new training features, designed to mimic experimental constraints. These include pocket, con-tact, and docking constraints, which capture varying granularity of interactions between entities in a complex.These work similarly to how templates provide intra-chain distances, but are focused instead on providinginter-chain distance information (seeMethods for additional details). These features are trained with dropoutto prevent themodel fromoverly relying on these constraints. During inference, these constraints can be spec-ified using prior knowledge or information gained from experiments such as hydrogen-deuterium exchangemass spectrometry or cross-linking mass spectrometry.
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Figure 2 Chai-1 achieves best-in-class performance on a diverse range of folding tasks. Panels show percentage successacross a variety of modeling tasks. Metrics are: percentage of pocket-aligned RMSD < 2 Å for ligands, DockQ > 0.23 forprotein-protein and antibody-protein interfaces, and Cα-LDDT for protein monomers. Horizontal bars indicate statisti-cally significant differences. Error bars are calculated with an exact binomial distribution for PoseBusters, and a two-sidedWilcoxon test for all others.

2.2 Protein-ligand prediction
We evaluate Chai-1 on the PoseBusters benchmark set [15], which measures protein-ligand interactions. Allstructures in this benchmark set are released on or after 2021-01-13 – after our training data cutoff. Wefollow the recommendations provided in Buttenschoen et al. [15] andAbramson et al. [11] to compute successrate on this benchmark as the fraction of predictions with ligand root mean square deviation (ligand RMSD)to the ground truth lower than 2 Å. We rank samples by the interface pTM-score of the ligand and penalizeligands that do not respect the input chirality by dividing their interface pTM-score by 100. We do not predictstructure 7D6O, which has been marked as obsolete in PDB. For 4/428 structures that have more than 2048tokens, we crop the assembly to the 2048 tokens closest to the ligand binding site.
Given only the sequence of the protein and the chemical composition of the ligand, Chai-1 achieves a ligandRMSD success rate of 77%, which is comparable to the 76% achieved by AlphaFold3 (Figure 2). To evaluatethe prompting and conditioning capabilities of Chai-1, we also evaluate on a docking task, which is the originalsetting proposed by the authors [15]. Namely, specifying the apo structure of the protein boosts success rateto 81%. We note that the holo structure of the protein could leak conformational information that makes thetask easier, and we therefore primarily consider this task as a way to evaluate the prompt following abilitiesof the model.
To aid in future community benchmarking efforts, we make Chai-1 predicted structures of the Posebustersset available. We also provide the results of detailed chemistry checks performed by the Posebusters pythonpackage [15] (Supplementary Figure S1).
To explore the limitations of our model and our approach to benchmarking it, we manually inspect exampleswhere our model underperforms. In the case of 7Q2B [16], Chai-1 predicts the ligand as deeper inside thebinding pocket than the ground truth structure suggests. However, the ground truth structure also indicates adimethyl sulfide (DMS)molecule situated deep in the binding pocket. DMS is typically used as a crystallizationaid for elucidating structures and its presence may prevent the ligand from binding in a deeper conformation.In the absence of DMS, we find that aromatic ligands from the same campaign [16] appear to be situateddeeper in the binding pocket, suggesting that the alternative pose predicted by Chai-1 may indeed be feasible(Figure 3). This highlights the importance of manually inspecting models, and is one of our motivations for
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Figure 3 Exploring model and benchmarking limitations. Left panel shows Chai-1’s top-ranked prediction (ligand RMSD1.73 Å) on the PoseBusters structure 7Q2B, compared to reference ground truth structure (gray). Chai-1 predicts theligand (tan) deeper inside the pocket (blue) than the ground truth structure; however, the ground truth structure containsa DMS molecule deep in the pocket that may be blocking the ligand. Structures for two similarly aromatic ligands studiedin the same work [16] (7Q2C, center; 7Q2F, right) show ligands with two aromatic rings (peach) similar to that present in7Q2B binding deeper in the pocket (gray) in the absence of DMS.

releasing the Chai-1 code and model weights.
2.3 Multimeric protein prediction
We evaluate performance on protein multimers on an evaluation set comprised of protein structures fromthe PDB that were released after Chai-1’s training date cutoff. We further filtered this evaluation set to a setof protein-protein interfaces with low homology to our training set (see Methods). This resulted in a set of
n = 2362 protein-protein interfaces among n = 1054 PDB structures, which we then clustered to obtain n =
929 interface clusters. We predict the full complex of each structure using Chai-1 and Alphafold Multimer 2.3(AF2.3) and score the low-homology interfaces using DockQ. To avoid bias in the data distribution, we clustercomplexes at 40% sequence identity and report average DockQ success rates (i.e. fraction of predictionswith DockQ > 0.23) across clusters (Figure 2). We find that Chai-1 significantly outperforms AF2.3 on thisevaluation set (two-sided Wilcoxon test, p = 6.24 × 10−10, Table 1) with an average success rate of 0.751compared to 0.677. In single-sequence mode without MSAs, Chai-1 also performs comparably to AF2.3 withMSAs (0.698 vs. 0.677; difference between means is not statistically meaningful). Notably, while previouswork has studied single-sequence models for multimer folding [17], prior methods have fallen short of AF2.3in terms of performance. Chai-1 is the first model to offer high-accuracy multimer folding without the needfor MSAs, while also outperforming AF2.3 when using MSAs.
Antibodies are an increasingly popular class of therapeutic molecules due to their attractive drug-like prop-erties [18]. We created a subset of the evaluation set that includes only interfaces where one entity wasdetermined to be an antibody (see Methods for details). This set includes 268 interfaces across 129 struc-tures, forming 122 redundancy reduced clusters. On this antibody-protein evaluation set, Chai-1 outper-forms AF2.3 by a significant margin, as measured via DockQ success (DockQ > 0.23, two-sided Wilcoxontest, p = 3.25 × 10−5, Table 1). In fact, Chai-1 without MSAs in single-sequence mode performs similarlyto Chai-1 when given full MSAs on these antibody-protein interfaces, and also outperforms AF2.3 (whichis still provided MSA information, two-sided Wilcoxon test, p = 4.04 × 10−4). We hypothesize that MSAshave little performance impact for Chai-1 on this antibody set because there is less evolutionary signal avail-able in the first place for these more variable sequences. This echoes the findings of prior works developingsingle-sequence folding methods [19]. Following this logic, Chai-1 in single-sequence mode appears to bea particularly potent method for exploring design space of highly variable immunological protein sequencesas it is both fast and accurate. More broadly, these results suggest that Chai-1 sets a new benchmark formultimer protein folding in both its full performance mode with MSAs, and its single-sequence mode withoutMSAs and without structural templates.
We also evaluate Chai-1 on a subset of antibody-antigen protein interfaces. Note that this subset differs
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Figure 4 A) DockQ success rates for antibody-antigen interfaces from the low homology evaluation set. DockQ ismeasured on interfaces where one chain is specified as an antibody and the other as an antigen according to SAbDAbannotation [20]. Bars are grouped by acceptable, medium, and high quality predictions. Bars show performance of Chai-1in five settings, One Contact (15A)/One Contact (25A) we randomly sample a pair of residues, one in the antibody chainand one in the antigen chain with distance less than 15Å/25Å respectively and provide the pair and distance thresholdto our model as a contact feature. One Epitope (8 Å)/Four Epitope (8 Å) we sample one/four antigen residue(s) that haveminimum Cα distance less than 8Å to some residue in the antigen chain and provide this residue and chain as a pocketfeature. Finally, the Blind setting shows our models performance without constraints provided. B) Cherry-picked examplepredictions for PDB ID 7SYV with and without epitope residues (pocket restraints, purple) provided. Conditioning onepitope residues improves this prediction dramatically increasing the DockQ score from 0.10 to 0.81.

from the more general antibody-protein subset as it restricts specifically to antibody-antigen interactions. Incases where multiple copies of an antibody/antigen pair appear in the same pdb, we evaluate independentlyon each copy. For this reason, the number of interfaces reported here will be larger than that of the generalevaluation set. We illustrate the impact of our pocket and contact features by simulating experimentallyderived constraints in the form of epitope residues and pairwise distance restraints. In Figure 4 we see thatpredictions generally improve as more restraint information is provided. When the model is conditionedon a single antibody-antigen distance restraint (θ ≤ 15Å), the percentage of DockQ acceptable predictionsincreases from the baseline of 35% to 57%. Conditioning on four randomly sampled epitope residues morethan doubles the DockQ success rate accross all quality cutoffs compared to baseline (Blind) performance.Unfortunately the fraction of high quality predictions still remains low (4-8%) which suggests that high qualityantibody-antigen structure prediction remains a generally challenging task.
2.4 Protein monomer prediction
Wenext curated a low-homology proteinmonomer set consisting of 447 proteinmonomers, belonging to 271clusters. We ran Chai-1 with full MSA information, Chai-1 in single sequence mode, and AF2.3 on this set ofprotein monomers and evaluated the accuracy of the predicted structures by Cα-LDDT (Figure 2). We findthat Chai-1 when given full MSA information outperforms AF2.3 by a small but statistically significant margin(two-sided Wilcoxon test, p = 7.21× 10−10). Without MSA information, Chai-1 exhibits poorer performanceon monomer folding than AF2.3 (two-sided Wilcoxon test, p = 4.46× 10−16).
Due to commercial use restrictions, we are unable to directly compare to several recent methods for proteinstructure prediction. We attempt to fairly compare to these methods by additionally evaluating Chai-1 on theCritical Assessment of Structure Prediction 15 (CASP15) protein structure prediction targets, consisting of70 protein monomers. Of these, we exclude one structure that could not complete inference on Chai-1 in areasonable timeframe (T1169). On the remaining 69 targets, we find that Chai-1 achieves an average LDDT of0.849, whereas AF2.3 – the previous state-of-the-art monomer folding model – achieves an average LDDT of
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Figure 5 Assessment of model predicted confidence scores against ground truth structures on interfaces from the
evaluation set. Here we show results for all interfaces in our low homology subset, and do not restrict only to interfaceswith low homology. We remark that all pdbs in this set have a later PDB release date than our training set. Chain-pairipTM is shown for each plot and refers to the ipTM score of the two chains defining the interface being evaluated. A)Boxplot of DockQ against binned chain pair ipTM restricted to protein-protein interfaces. B) Boxplot of DockQ againstbinned chain pair ipTM restricted to protein-nucleic acid interfaces. C) Swarm plot of pocket RMSD against binned chainpair ipTM. Dots show ligand RMSD, sampled down to 5% of the overall data. Note that Protein-Ligand interactions arerestricted to non-bonded ligands and exclude ions.

0.843. If we focus specifically on the targets that AF2.3 struggles to predict (AF2.3 LDDT < 0.75), we find thatChai-1 predicts significantly more accurate structures for these examples (average LDDT of 0.643 comparedto 0.552 for AF2.3, two-sided Wilcoxon test, n = 14, p = 3.66× 10−4). ESM3 [21] also reports results on thefull set of 70 CASP15 targets, and achieves an average LDDT of 0.801 with their largest 98-billion parametermodel.
2.5 Nucleic acid structure prediction
We evaluate Chai-1 on nucleic acid structure prediction tasks, running the model in single sequence mode(i.e. no RNA MSAs) in all cases. We evaluate performance on a low-homology evaluation set constructed ina similar fashion to our low-homology evaluation sets for proteins and protein-protein interfaces. Owing tothe lower number of examples for protein-nucleotide complexes, we report performance metrics averagedacross individual examples instead of first averagingwithin clusters and reporting average performance acrossclusters. We find that Chai-1 has similar performance to RosettaFold2NA on these complexes as evaluatedusing interface Cα-LDDT (Figure S2), despite not relying on nucleic acidMSAs. We also evaluate performanceon RNA structures using 9 CASP15 RNA targets measuring LDDT over C1′ atoms. We compare Chai-1’sperformance against that of RoseTTAFold2NA, finding that the twomethods produce comparable results hereas well. These results are in spite of the fact that Chai-1 is trained and performs inference without MSAs fornucleic acid sequences, whereas RoseTTAFold2NA has full access to such evolutionary information. Futurework incorporating nucleic acid MSAs or nucleic acid language model embeddings [22, 23] could improve itsaccuracy when modeling these complexes.
2.6 Predicted confidence scores track accuracy
We find that model confidence estimates from Chai-1 are well calibrated with prediction quality. In Figure 5we show that interface predicted TM score (ipTM) is a strong discriminator of model quality across all molec-ular interaction types. We note that the set of interfaces evaluated in Figure 5 include all model predictionsrather than only the top prediction for each interface, ranked by confidence. We also note that that protein-ligand interactions are restricted to non-bonded ligands and exclude ions.
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2.7 Chai-1 lab server
The Chai-1 lab server uses the Chai-1 Github repository as a dependency. To enable low-latency MSA gener-ation, we developed a distributedMSA search pipeline which runs jackhmmer in parallel on multiple shards ofthe genetic databases UniRef90, Uniprot andMgnify. Unlike our training and evaluation data, the server doesnot query the Uniclust30+BFD database or use the -N 3 flag on jackhmmer. We spot-checked the differencein results between the server and our internal inference pipeline on a set of examples from the Posebustersevaluation set, finding that they differ by < 1Å RMSD in all cases (µ = 0.345Å, σ = 0.150Å), even thoughthe accelerated server version was run without templates. We note that these changes may still result insubtle discrepancies between the server results and those in the paper, and we therefore refer readers to theGitHub repository where all variables can be controlled.
2.8 Limitations
A limitation we frequently encountering when evaluation Chai-1 is that the model may sometimes predictthe individual chains in a complex correctly, but fail to place them in the correct relative orientations. Anexample of this behavior is shown in the first panel of Figure 4, where the predicted complex is poor withoutadditional contact information.
Another notable limitation is that Chai-1 can be highly sensitive to modified residues. Removing modifiedresidues from a sequence that natively posses them or replacing modified amino acids with their standardamino acid analogs can cause large changes in predicted structures. We hypothesize that this is becauseChai-1 has been trained explicitly on structures with modifications and relies on this information to accuratelypredict structures. More plainly, those same amino acid sequenceswithoutmodificationsmight be consideredto be entirely different inputs.
3 Discussion

We believe that building an accurate understanding of the structure of biological molecules is foundationalto advancing our scientific understanding of cellular processes, and ultimately, for advancing human health.In this spirit, we are excited to share our latest folding model, Chai-1. We are excited to build and improvethis model with the greater scientific community.
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4 Methods

4.1 Architecture
The Chai-1 neural architecture largely follows previous work Abramson et al. [11], with a heavy reliance onpair-bias self-attention. Key differences to previous work is summarized below.
4.1.1 Language model embeddings

Chai-1 is trained on a combination of multiple sequence alignments and protein language model embeddingsgenerated by a 3 billion parameter model [8]. This model generates per-residue embeddings for each inputprotein sequence. Modified residues are replaced with their canonical “parent” residue if available, and areotherwise replaced with an unknown (“X”) amino acid type. Residues that do not belong to a protein chain(i.e. DNA, RNA, or ligands) are assigned a mask token.
At inference time, Chai-1 can be run with any combination of MSAs, templates, and language model embed-dings.
4.1.2 Constraints features

Pocket constraints are represented by a token ID, i, chain ID, C , and distance threshold, θP . The featurespecifies thatminj∈C ∥xi−xj∥ ≤ θP . During training, we randomly sample θP ∈ (6, 20) and randomly samplesatisfying pocket constraints from the ground truth structure. Contact constraints are represented by a pair oftokens i and j, and a distance threshold θ. Similar to the pocket constraint, we randomly sample θD ∈ (6Å, 30Å)and satisfying constraints ∥xi − xj∥ ≤ θD from the ground truth structure. The docking feature is a one-hotencoding of pairwise distances between subsets of input tokens using four bins [0−4Å, 4−8Å, 8−16Å, > 16Å].This differs from template information, as while templates contain intra-chain distance information, they donot contain inter-chain distances. Docking constraint features are generated by first partitioning the chains ofthe ground truth complex into two groups, and then generating pairwise distances between all token centercoordinates within each group.
During training, we also apply chain-wise and token-wise dropout on constraints features, i.e. we sometimesprovide docking constraints for only a subset of the tokens and chains in the true structure. Additionally,each of these features is included independently with probability 10% during training. When a feature is notincluded, a separate learnable mask value is used. In order to facilitate accurate prediction in a variety ofconstraint settings, we also randomly sample the number of distance and pocket restraints according to ageometric distribution with parameter p = 1

3 .
4.2 Data and Training
We trained Chai-1 on 128 Nvidia A100 GPUs with a batch size of 128 for 30 days. Chai-1 is trained on bothPDB and AlphaFoldDB [24] structures. For PDB structures, we apply with a release date cutoff of 2021-01-12. We do not train on any of the distillation datasets described in [11] other than AFDB. Templates aregenerated using PDB70 with the same cutoff date. We largely follow the data preprocessing and clusteringsteps from Abramson et al. [11].
4.2.1 Genetic search

Whenever available, we use MSAs that have been generated and deposited in OpenProteinSet [25] fordatabases UniRef90 [26], UniProt [27], MGnify [28], and UniClust30+BFD [6]. Following [11], when suchMSAs are not available, we compute MSAs using jackhmmer v3.4 [29] on the UniRef90, UniProt, and MG-nify databases, with the arguments -N 1 -E 0.0001 --incE 0.0001 --F1 0.0005 --F2 0.00005 --F3 0.0000005as well as an additional --seq_limit flag that is set to the following for each database:
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Database --seq_limitUniRef90 10000UniProt 50000Reduced BFD 5000MGnify 5000
For inference over the datasets in our main analysis (CASP15, the low-homology evaluation sets, and Pose-Busters), we additionally generated MSAs using jackhmmer with 3 iterations (-N 3 flag) on the UniRef90,UniProt, and MGnify databases. All databases use the same date cutoffs and versions described in [6]. Toavoid excessive computational time, the web interface only provides MSA with n=1 JackHMMer iteration,although the open-source code can be run with any user-provided MSA.
4.3 Inference
Inference with Chai-1 is run with dropout disabled, except for the CASP15 where the model was run withdropout enabled.
Unlike Abramson et al. [11], we use the same model for all evaluations since our training data cutoff does notoverlap with the data used in any of our evaluation sets. We run Chai-1 with 5 trunk samples and 5 diffusionsamples for a total of 25 predicted structures unless otherwise noted. A confidence model is then used forranking (details below).
Unless otherwise noted, inference is run on FASTA and/or SMILES sequences derived from the first biologicalassembly in the corresponding target cif file. In all cases we remove crystallization aids, mirroring how ourmodel was trained.
4.4 Baseline methods
We ran AlphaFold-multimer 2.3 [12] on protein monomers and multimers via the popular community wrap-per ColabFold [30], version 1.5.5. ColabFold uses the same model weights as AlphaFold, but notably replacesthe expensive genetic search procedure for building MSAs with a faster search via MMseqs2 [31]. ColabFoldhas been shown to be significantly faster than the original AlphaFold2 code without performance regressions[30], and outperforms the original AlphaFold pipeline on the CASP15 blind structure prediction assessment(https://predictioncenter.org/casp15/zscores_final.cgi). We follow the ColabFold MSA generation docu-mentation, and as input to ColabFold, we provide MSAs generated by running MMSeqs2 against UniRef30(version 2303) and colabfold_envdb (version 202108). We do not search for or provide templates, as priorworks have shown minimal effect on model performance (indeed, two of the five AlphaFold2 models werenot trained on templates in the first place). We use weights for AlphaFold2-multimer version 2.3, runningwith 3 recycles across 5 models and 5 seeds, and without relaxation. We use the top-ranked output acrossthese 25 examples. We verified that this setup produces results largely concordant with values present inthe literature. Namely, Hayes et al. [21] reports that AlphaFold2 achieves 0.826 LDDT on n = 70 structuresin CASP15. In our reproduction, we obtain an LDDT of 0.842.This value differs slightly from the value wediscuss in our results section, as it includes all 70 structures whereas the main results exclude one structure.
We ran RoseTTAFold2NA via Tamarind Bio’s API https://www.tamarind.bio/api-docs, which also followsthe best practices and open-source codebase for that method. All other performance results are taken fromtheir respecive original works.
4.5 Metrics
Protein-ligand complex prediction is evaluated using pocket-aligned ligand RMSD. This is computed by firstaligning the predicted and native structures using interface atoms in the native structure. Interface atomsare defined as any Cα atom within 10 Å of any ligand atom in the true structure. After alignment, RMSD iscomputed over ligand atoms to calculate pocket-aligned ligand RMSD.
We measure the quality of protein-protein interfaces using DockQ [32]. When comparing complexes thatrequire fewer than 8! = 40320 chain mapping permutations to exhaustively enumerate, we enumerate all
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permutations and select the chain mapping permutation that optimizes global DockQ score averaged acrossall interfaces. For larger complexes, we adopt an alignment-based strategy as follows. For each predictedchain ĉ, we consider all native structure chains c that share the same sequence. We choose a native chain
cj find the transformation that, when applied to the predicted chain ĉi minimizes RMSD between ĉi and cj .We then apply this transformation to the entire predicted complex C and greedily assign a chain mapping byselecting the nearest predict chain for each native chain. We generate such chain mappings considering allpossible combinations of ĉi and cj and select the chain mapping permutation that optimizes global DockQscore averaged across all interfaces. In both cases, we evaluate individual interface DockQ scores withinthe overall complex. Note that this approach differs significantly from the simulated annealing approachdescribed by Abramson et al. [11]. Our approach avoids inconsistent chain assignments that may arise fromrandomness and local minima associated with the simulated annealing process.
Weuse the local difference delta test [33] (LDDT) computed over reference atoms to evaluate folding accuracyon protein and nucleotidemonomers. Protein LDDT is evaluatedwith an inclusion radius of 15 Å on Cα atoms.An inclusion radius of 30 Å nucleotides is used on C1′ atoms. Protein-nucleotide interfaces are evaluatedusing interface LDDT (iLDDT) over Cα and C1′ atoms in the interface.
4.6 Evaluation set
Our evaluation set is constructed from a temporal split of PDB entries released between 2022-05-01 and2023-01-12; these structures were all released after any data in our training set (most recent cutoff date of2021-01-12). We additionally restricted to non-NMR structures with resolution better than 4.5 Å. From thisdataset, we removed monomers and interfaces with substantial homology to the training set:

• Monomers with 40% or greater sequence identity to the training set are removed.
• Polymer-polymer interfaces where both polymers have greater than 40% sequence identity to twochains in the same complex in the training set are filtered out.
• Polymer-peptide interfaces where the non-peptide entity has 40% or greater sequence identity to thetraining set are removed.

We additionally cluster the above low-homology evaluation set. Individual polymer chains were clustered at40% sequence identity for proteins more than 9 residues, and 100% sequence identity for proteins with 9 orfewer residues and for all nucleic acids. Clustering on interfaces is accomplished by assigning a cluster ID toeach participant in the interface, and constructing a full interface cluster id from those components:
• Polymer-polymer interfaces are given a cluster ID of (polymer1_cluster, polymer2_cluster).
• Polymer-ligand interfaces are assigned the cluster ID of the polymer entity.

Evaluation on this dataset is done on either individual monomer chains, or on specific low-homology inter-faces extracted from a full complex prediction. Note that in the case of complexes, the overall complex thatwe predict may contain chains that have significant homology to the training set, but we only evaluate oninterfaces that are low-homology as defined above. We use Biological Assembly 1 for all evaluation.
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5 Supplementary Information

5.1 Supplementary tables and figures

Table 1 Protein structure prediction performance on evaluation sets. Leading values indicatemean, values in parenthesesindicate 95% confidence interval from 10,000 bootstrap samples. Protein interfaces are scored by DockQ success rate;protein monomers are scored by Cα-LDDT.
Method Protein-protein interfaces Protein-antibody interfaces Protein monomersChai-1 (with MSA) 0.751 (0.723, 0.778) 0.529 (0.438, 0.620) 0.915 (0.907, 0.922)Chai-1 (single-sequence) 0.698 (0.668, 0.728) 0.479 (0.388, 0.570) 0.852 (0.834, 0.867)AlphaFold 2.3 multimer 0.677 (0.646, 0.706) 0.380 (0.298, 0.463) 0.903 (0.895, 0.911)

Table 2 Fraction of predictions with ligand RMSD ≤ 2 Å on Posebusters V1 dataset (restricted to 427 structures afterremoval of PDB ID 7D6O)
Method Success rateChai-1 77.05 %AF3 76.34 %RF2AA 42 %Chai-1 - Docking 81.20 %
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Figure S1 Extended data for posebusters evaluation A) Posebusters detailed checks on predicted structures for Chai-1and AF3. Chai-1 generates chemically valid structures, but sometimes struggle to respect the chirality of the input ligand,an issue also observed in AF3. Notably, Chai-1’s predicted structures exhibit a lower inter-molecular clash rate thanAF3; we did not have to use a clash penalty for sample ranking. B) Cumulative density plot of ligand RMSD of modelpredictions on Posebusters set. Chai-1 confidence ranked takes the best sample among 5 trunk samples and 5 diffusionsamples, ranked by ligand ipTM. Chai-1 random takes the mean over the aforementioend 25 samples, and Chai-1 oracletakes the best (lowest ligand RMSD) prediction after comparing all 25 examples to the ground truth. C) Binned ligandipTM confidence score against top-ranked prediction ligand RMSD on the Posebusters evaluation set.
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Figure S2 Chai-1 performance on nucleic acid complex prediction. Protein-nucleic acids complexes are evaluated usinginterface LDDT, and RNA complexes are evaluated using C1′-LDDT. Boxes indicate the inter-quartile range across 10,000bootstrap samples, and whiskers indicate 95% confidence interval (also across 10,000 bootstrap samples).
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5.2 Supplementary data
Predicted structures for the posebusters set are available at https://chaiassets.com/chai-1/paper/assets/
posebusters_predictions.zip

14

https://chaiassets.com/chai-1/paper/assets/posebusters_predictions.zip
https://chaiassets.com/chai-1/paper/assets/posebusters_predictions.zip


References

[1] Rahul Raman, V Sasisekharan, and Ram Sasisekharan. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chemistry & biology, 12(3):267–277, 2005.
[2] Rie Umeda, Yuhkoh Satouh, Mizuki Takemoto, Yoshiko Nakada-Nakura, Kehong Liu, Takeshi Yokoyama, MikakoShirouzu, So Iwata, Norimichi Nomura, Ken Sato, et al. Structural insights into tetraspanin cd9 function. Nature

communications, 11(1):1606, 2020.
[3] Veronika Obsilova and Tomas Obsil. Structural insights into the functional roles of 14-3-3 proteins. Frontiers in

molecular biosciences, 9:1016071, 2022.
[4] Maria Batool, Bilal Ahmad, and Sangdun Choi. A structure-based drug discovery paradigm. International journal of

molecular sciences, 20(11):2783, 2019.
[5] Clemens Isert, Kenneth Atz, and Gisbert Schneider. Structure-based drug design with geometric deep learning.

Current Opinion in Structural Biology, 79:102548, 2023.
[6] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-vunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction withalphafold. nature, 596(7873):583–589, 2021.
[7] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang,Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and interactions usinga three-track neural network. Science, 373(6557):871–876, 2021.
[8] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu,Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli,Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science,379(6637):1123–1130, 2023.
[9] MinkyungBaek, RyanMcHugh, IvanAnishchenko, Hanlun Jiang, David Baker, and FrankDiMaio. Accurate predictionof protein–nucleic acid complexes using rosettafoldna. Nature methods, 21(1):117–121, 2024.

[10] Rohith Krishna, JueWang, Woody Ahern, Pascal Sturmfels, Preetham Venkatesh, Indrek Kalvet, Gyu Rie Lee, Felix SMorey-Burrows, Ivan Anishchenko, Ian R Humphreys, et al. Generalized biomolecular modeling and design withrosettafold all-atom. Science, 384(6693):eadl2528, 2024.
[11] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, LindsayWillmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions withalphafold 3. Nature, pages 1–3, 2024.
[12] Richard Evans, Michael O’Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green, Augustin Zidek,Russ Bates, Sam Blackwell, Jason Yim, Olaf Ronneberger, Sebastian Bodenstein, Michal Zielinski, Alex Bridgland,Anna Potapenko, AndrewCowie, Kathryn Tunyasuvunakool, Rishub Jain, Ellen Clancy, Pushmeet Kohli, John Jumper,and Demis Hassabis. Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021. doi: 10.1101/2021.10.04.

463034v1.
[13] Alexander Rives, JoshuaMeier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C LawrenceZitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised learning to 250 millionprotein sequences. Proceedings of the National Academy of Sciences, 118(15):e2016239118, 2021.
[14] Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alex Rives. Language models enable zero-shotprediction of the effects of mutations on protein function. Advances in neural information processing systems, 34:29287–29303, 2021.
[15] Martin Buttenschoen, Garrett M. Morris, and Charlotte M. Deane. Posebusters: Ai-based docking methods fail togenerate physically valid poses or generalise to novel sequences, 2023. URL https://arxiv.org/abs/2308.05777.
[16] Romain Galy, Stéphanie Ballereau, Yves Génisson, Lionel Mourey, Jean-Christophe Plaquevent, and LaurentMaveyraud. Fragment-based ligand discovery applied to the mycolic acid methyltransferase hma (mmaa4) frommycobacterium tuberculosis: a crystallographic and molecular modelling study. Pharmaceuticals, 14(12):1282, 2021.
[17] Jinhua Zhu, ZhenyuHe, Ziyao Li, Guolin Ke, and Linfeng Zhang. Uni-fold musse: De novo protein complex predictionwith protein language models. bioRxiv, pages 2023–02, 2023.

15

https://arxiv.org/abs/2308.05777


[18] María Sofía Castelli, Paul McGonigle, and Pamela J Hornby. The pharmacology and therapeutic applications ofmonoclonal antibodies. Pharmacology research & perspectives, 7(6):e00535, 2019.
[19] Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu, Qi Xie, BonnieBerger, et al. High-resolution de novo structure prediction from primary sequence. BioRxiv, pages 2022–07, 2022.
[20] James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges, Jiye Shi, and CharlotteM.Deane. SAbDab: the structural antibody database. Nucleic Acids Research, 42(D1):D1140–D1146, 11 2013. ISSN0305-1048. doi: 10.1093/nar/gkt1043. URL https://doi.org/10.1093/nar/gkt1043.
[21] Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil, Vincent Q Tran,Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of evolution with a language model. bioRxiv,pages 2024–07, 2024.
[22] Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional encoder representa-tions from transformers model for dna-language in genome. Bioinformatics, 37(15):2112–2120, 2021.
[23] Manato Akiyama and Yasubumi Sakakibara. Informative rna base embedding for rna structural alignment and clus-tering by deep representation learning. NAR genomics and bioinformatics, 4(1):lqac012, 2022.
[24] Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina Yordanova, DavidYuan, Oana Stroe, Gemma Wood, Agata Laydon, Augustin Žídek, Tim Green, Kathryn Tunyasuvunakool, Stig Pe-tersen, John Jumper, Ellen Clancy, Richard Green, Ankur Vora, Mira Lutfi, Michael Figurnov, Andrew Cowie, NicoleHobbs, Pushmeet Kohli, Gerard Kleywegt, Ewan Birney, Demis Hassabis, and Sameer Velankar. AlphaFold ProteinStructure Database: massively expanding the structural coverage of protein-sequence space with high-accuracymodels. Nucleic Acids Research, 50(D1):D439–D444, 11 2021. ISSN 0305-1048. doi: 10.1093/nar/gkab1061. URL

https://doi.org/10.1093/nar/gkab1061.
[25] Gustaf Ahdritz, Nazim Bouatta, Sachin Kadyan, Lukas Jarosch, Dan Berenberg, Ian Fisk, Andrew Watkins, StephenRa, Richard Bonneau, and Mohammed AlQuraishi. Openproteinset: Training data for structural biology at scale.

Advances in Neural Information Processing Systems, 36, 2024.
[26] Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, Cathy H Wu, and UniProt Consortium. Unirefclusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics, 31(6):926–932, 2015.
[27] The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1):D480–D489, 11 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa1100. URL https://doi.org/10.1093/nar/gkaa1100.
[28] Alex L Mitchell, Alexandre Almeida, Martin Beracochea, Miguel Boland, Josephine Burgin, Guy Cochrane, Michael RCrusoe, Varsha Kale, Simon C Potter, Lorna J Richardson, et al. Mgnify: the microbiome analysis resource in 2020.

Nucleic acids research, 48(D1):D570–D578, 2020.
[29] L Steven Johnson, Sean R Eddy, and Elon Portugaly. Hidden markov model speed heuristic and iterative hmm searchprocedure. BMC bioinformatics, 11:1–8, 2010.
[30] Milot Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin Steinegger. Co-labFold: Making Protein folding accessible to all. Nature Methods, 2022. doi: 10.1038/s41592-022-01488-1.
[31] Milot Mirdita, Martin Steinegger, and Johannes S"oding. MMseqs2 desktop and local web server app for fast, inter-active sequence searches. Bioinformatics, 35(16):2856–2858, 2019. doi: 10.1093/bioinformatics/bty1057.
[32] Sankar Basu and Björn Wallner. Dockq: a quality measure for protein-protein docking models. PloS one, 11(8):e0161879, 2016.
[33] Valerio Mariani, Marco Biasini, Alessandro Barbato, and Torsten Schwede. lddt: a local superposition-free score forcomparing protein structures and models using distance difference tests. Bioinformatics, 29(21):2722–2728, 2013.

16

https://doi.org/10.1093/nar/gkt1043
https://doi.org/10.1093/nar/gkab1061
https://doi.org/10.1093/nar/gkaa1100

	Introduction
	Results
	Model Architecture
	Language model embeddings
	Constraint features

	Protein-ligand prediction
	Multimeric protein prediction
	Protein monomer prediction
	Nucleic acid structure prediction
	Predicted confidence scores track accuracy
	Chai-1 lab server
	Limitations

	Discussion
	Methods
	Architecture
	Language model embeddings
	Constraints features

	Data and Training
	Genetic search

	Inference
	Baseline methods
	Metrics
	Evaluation set

	Supplementary Information
	Supplementary tables and figures
	Supplementary data


