
Zero-shot antibody design in a 24-well plate
Chai Discovery Team

Abstract. Despite breakthroughs in protein design enabled by artificial intelligence, reliably designingfunctional antibodies from scratch has remained an elusive challenge. Recent works show promise butstill require large-scale experimental screening of thousands to millions of designs to reliably identifyhits. In this work, we introduce Chai-2, a multimodal generative model that achieves a 16% hit rate infully de novo antibody design, representing an over 100-fold improvement compared to previous com-putational methods. We prompt Chai-2 to design≤20 antibodies or nanobodies to 52 diverse targets,completing the workflow from AI design to wet-lab validation in under two weeks. Crucially, none ofthese targets have a preexisting antibody or nanobody binder in the Protein Data Bank. Remarkably,in just a single round of experimental testing, we find at least one successful hit for 50% of targets,often with strong affinities and favorable drug-like profiles. Beyond antibody design, Chai-2 achievesa 68% wet-lab success rate in miniprotein design – routinely yielding picomolar binders. The highsuccess rate of Chai-2 enables rapid experimental validation and characterization of novel antibodiesin under two weeks, paving the way toward a new era of rapid and precise atomic-level molecularengineering.
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1 Introduction

Antibodies emerged over 500 million years ago to recognize molecular targets selectively and with high pre-cision [1]. These properties, coupled with often favorable biophysical and immunogenic characteristics, havemade antibodies highly desirable as therapeutics.
Today, antibodies are predominantly discovered by animal immunization campaigns or the screening of largeimmune repertoires or synthetic libraries [2]. These methods have helped facilitate substantial progress inthe discovery process, resulting in the rapid growth of antibodies as a key therapeutic modality. By 2022,monoclonal antibodies constituted more than half of all biopharmaceutical approvals in the US and Europe,up from only 20% in the early 2000’s. [3]
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Despite their success, traditional discovery pipelines remain resource-intensive and time-consuming, and fre-quently yield leads that demand months of downstream affinity or developability optimization. Moreover,these methods offer limited control of the desired binding site and often fail to hit hard targets or challenging-to-reach epitopes altogether.
These challenges have inspired significant research into computational methods for antibody discovery, whichpromise to deliver high-quality candidates at scale. Machine learningmethods have driven significant advance-ments in molecular structure prediction [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and more recently in protein design[15, 16, 17, 18, 19, 20, 21]. Although several groups have reported de novo antibody generation pipelines[22, 23, 24, 25, 26], none have demonstrated broad generalization to many targets and their hit rates rarelyexceed 0.1% in the laboratory. As a result, these methods still rely on high-throughput experimental screeningmethods, undermining many of the principal benefits that they are intended to address.
Our main contributions are:

• We introduce Chai-2, which (to our knowledge) is the first fully de novo generation platform to designantibody binders with success rates high enough to reliably skip high-throughput screening.
• Wesuccessfully design diverse classes of binders—includingminiproteins, antibody variable heavy chains(VHHs) and single chain variable fragments (scFvs)—across more than 50 targets, achieving state-of-the-art experimental success rates in all categories.
• We design and test ≤ 20 antibodies or nanobodies per target, and found at least one experimentallyconfirmed de novo binder to 26 out of 52 novel targets.
• Designed antibodies are novel, diverse, and exhibit favorable developability profiles in-silico.
• We show Chai-2 can further optimize designs for specific therapeutic requirements such as speciescross-reactivity.

The double-digit success rates we observe suggest that our method could enable discovery in a single 24-wellplate, reducing experimental timelines to the order of weeks, and tightening the design–validation feedbackloop. The high success rates across targets, with successful binders to roughly half of the antigens we tested,suggests this method could become broadly deployed. We believe our approach has the potential to reshapethe de facto strategies of biologics lead discovery, as well as to address targets that have been challenging fortraditional methods.
2 Methods

2.1 An all-atom foundation model for general purpose protein design
Chai-2 incorporates numerous advancements in all-atomgenerativemodeling. For example, theChai-2 foldingmodule predicts antibody-antigen complexes with experimental accuracy twice as often as our previous Chai-1 model (Figures S1 and S2). Chai-2 generates candidate binders for any specified binding-site defined by justa few residues (Figure 1a) entirely “zero-shot” and without requiring a known starting binder. In addition, Chai-2 can generate sequences in a variety ofmodalities – including scFv antibodies, VHHdomains, orminibinders –and can be prompted with multiple targets simultaneously, yielding proteins with tailored cross-reactivity andselectivity. Crucially, all of these capabilities are achieved without per-target tuning, demonstrating Chai-2’sscalability across diverse applications.
2.2 Broad experimental validation of design capabilities on unbiased targets
Weevaluate Chai-2 onminiprotein and antibody/nanobody design tasks. We select a separate panel of targetsfor each task; (1) a benchmark set from prior miniprotein studies to facilitate comparison, and (2) set of 52novel antigens with no known antibodies in the Protein Data Bank (PDB, [27]). We provide further detailsfor these sets through the remainder of this section. Additional information regarding target selection can befound in Section S1.
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Figure 1 The Chai-2 model series reliably enables high-affinity protein binder and antibody design with state-of-the-
art success rates. (a) The Chai-2 pipeline. Starting from a defined target structure and a list of epitope residues, thedesign model generates a sequence and all-atom structure that specifically interacts with the epitope. An in-silico rankingand selection model is employed to prioritize sampled designs. The top selected designs are directly advanced to fastexperimental characterization that typically fits in a small-scale plate format such as single-concentration biochemicalassays; the identified binders are further analyzed to determine quantitative binding affinity. Only two weeks are requiredto go from epitope to experimentally validated binders. (b) The percentage of targets per design modality (miniproteins,scFv, VHHs) where designs yield at least one experimentally validated binding design. (c) The percentage of total designsper modality exhibiting binding. Although it is difficult to directly compare lab success rates to previous work due to thelimited number of targets previously reported, we note that the best reported success rates for de novo antibody designare typically lower than 0.1%.

For miniprotein design, we test five targets previously studied in Cao et al. [28], AlphaProteo [20] or RFD-iffusion [18] (Table S1). Prior in silico methods have successfully designed miniproteins to four of the fivetargets: Interleukin-7 Receptorα (IL-7Rα), Insulin receptor (InsulinR), Programmed Death-Ligand 1 (PD-L1),and platelet-derived growth factor receptor β (PDGFRβ). As an additional challenge, we also test TNFα, atherapeutically important [29, 30] target estimated to be within the top 1% of difficulty among all potentialtargets in the PDB for in silico design [20]. The functional assembly of TNFα is a symmetric homotrimer thatbinds its native receptors (TNFR1 and TNFR2) through an interface between two subunit chains. The highlyflat and polar nature of this binding site makes TNFα particularly challenging for computational protein design.To our knowledge, no prior computational work has de novo designed a protein binding TNFα.
To rigorously profile Chai-2’s ability to design antibodies against fully novel targets, we directly select proteinsthat were in stock in vendor catalogs, while excluding all proteins homologous to any antigen in the structuralantibody database (SAbDab) [31] released prior to our training cutoff at 70% sequence identity and 80%coverage (see Section S1.2). Not only does this remove targets that have known antibodies themselves, butthis also removes targets similar to chains that have known antibodies. This creates a challenging, unbiasedset of novel targets that should assess Chai-2’s ability to design antibodies against arbitrary, unseen proteintargets. To efficiently select meaningful epitopes, we further filter to examples with a known (non-antibody)binding partner. We use the resulting target protein and up to four residues on its native binding interfaceas a prompt to Chai-2. These targets represent a diverse set of proteins, from various cellular contexts anddisease implications.
2.3 Experimental validation of candidate binders
For each target, we select up to 20 generated designs for experimental validation. We hypothesized thatimprovements in the quality of our models would allow us to avoid high-throughput experimental screening,and instead jump directly to individual characterization of each design.
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We note that we did not perform successive rounds of wet lab experimentation and this was our first attemptever at generating a binder for nearly every target tested. As such, results reflect the blind performance ofrunningChai-2 once in a new setting. We assess the binding strength of our designs by bio-layer interferometry(BLI) and we classified positive binding hits as designs with binding-positive curve signature while requiringthat the signal is both greater than 0.1 nm above background and greater than 300% of background. We alsoperform additional validation to characterize other aspects of our designs. See Supplementary InformationSection S5 for additional details.
3 Results

Experimental hit ratesa) b)

d)

c)

90o

Binding affinities

KD = 545pM*

KD = 4.3nM*

PDGFR

KD = 148pM

KD = 18.3pM

IL7Ra PD-L1

KD = 982pM

KD = 3.4nM

KD = 153pM

KD = 331pM

InsulinR

KD = 11.7nM*

KD = 4.46nM*

TNFa

*

*

*

*

Figure 2 Chai-2 achieves state of the art performance on minibinder design. (a) Experimental hit rates of miniproteingenerations from a prototype design model Chai-1d model (light blue) and our final Chai-2 model (dark blue). We compareto experimental success rates reported in the literature (shades of gray) [18, 20]. Error bars represent 95% confidenceinterval under a binomial distribution. (b) Distribution of binding affinity measurements (KD) for all positive binders. (c)Identified hits for the challenging target TNFα. (d) Predicted structures for selected binder designs and corresponding KDvalues for Chai-2 designed minibinders. Asterisk (*) indicates binding affinity measurements affected by avidity.

3.1 State of the art success rates in de novo miniprotein design
Computational miniprotein design has been thoroughly studied in the literature [28, 18, 20]. We thereforeused this task as an initial benchmark. Using the five aforementioned targets (Table S1), we experimentallyvalidate 20 designs for each from an initial prototype Chai-1d model, and 20-25 designs from Chai-2: PD-L1(25); IL-7Ra (23); InsulinR (20); TNFα (22); PDGFRβ (21)1. Experimental hit rates are shown on Figure 2a,juxtaposed with hit rates reported by prior works [18, 20]. For every target evaluated, Chai-2 achieves atleast a three fold improvement in experimental hit rate compared to the next-best method and is even able

1For convenience, we test slightly different numbers of designs per miniprotein target.
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to discover (to our knowledge) the first computationally designed hit against TNFα. A distribution of bindingaffinity measurements (KD) are shown for all discovered binders in Figure 2b. We observe picomolar KDvaluesfor IL7Ra, PD-L1, PDGFRβ, and Insulin R, and low-nanomolar affinities for TNFα. We show examples ofdesigned binders for all targets along with their binding affinities (KD) in Figure 2d. Chai-2 generates a varietyof secondary structure elements, including a single-digit nanomolar PDGFRβ binder composed almost entirelyof beta sheets.
3.2 Double-digit success rates in de novo antibody design
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Figure 3 Antibody design targets and results. (a)Design targets annotated with protein classification (left) and subcellularlocalization (right). (b) Success rates for each target (x-axis), shown as the number of experimentally binding (purple) andnon-binding (gray) de novo designs. (c) Structural (top) and sequence (bottom) novelty of experimentally tested designswith respect to known antibodies in the PDB. (d) Chai-2 generates diverse designs; top row shows three designed bindersto one target, bottom row shows each binding interface in detail. (e) Examples of successful binder designs with BLI curvesillustrating binding affinity. KDvalues marked with * are from avidity assay.
Building on our early success with miniprotein design, we tackled the more challenging problem of antibodydesign. Computational antibody design has historically been more difficult than miniprotein design, likelydue to the conformational flexibility of CDRs, the need to co-optimize two chains (heavy and light), and themediation of binding by loops and beta-sheets, rather than the alpha helices common in previous miniproteindesigns. As before, we prompt with a defined epitope on the target without any prior antibody structureor docking information. We also supply Chai-2 with a choice of antibody framework sequences among thefive most common therapeutic VHH scaffolds and, separately, the five most common therapeutic VH-VLframeworks (extendable to additional scaffolds as needed). From these frameworks, Chai-2 designs all CDRresidues (including their lengths)while preserving the chosen scaffold sequence. We apply this approach to theaforementioned broad, unbiased panel of 52 novel targets, spanning diverse protein families and subcellular
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localizations (Figure 3a), and test the designs experimentally in the wet-lab.
For each target and antibody format we select up to 20 designs for experimental validation (Figure 3b). Acrossthe 52 total targets for which we have completed assays for scFv or VHH designs, we observe at least onebinder for 26 of the targets, indicating that Chai-2 can create de novo antibodies for half of the proteinsevaluated (Figure 3b). We observe an average hit rate of 15.5% across all designed antibodies (20.0% withVHH, 13.7% with scFv, Figure 1b and c) – an improvement of two orders of magnitude over prior state of theart [22]. We observe similar pass rates on a “hard” subset of these targets stringently filtered to remove evenremote similarity (Figure S3), suggesting that these success rates reflect general design capabilities.
Although this evaluation explicitly focuses on targets with low similarity to chains with known antibodies,we nonetheless confirm that Chai-2 is not merely memorizing and retrieving the best training example duringdesign. To do this, we used permissive sequence and structure searches to retrieve potentially similar antibody-antigen structures from the SAbDab [31] antibody database for each design, and calculated antigen-alignedframework RMSD (see Supplemental Information for details). The vast majority of our designs are at least 10ÅRMSD from the most similar known antibody structure, and no designs are within 2Å of any existing antibodystructure (Figure 3C, top). We also evaluate sequence similarity by computing the minimumCDR edit distanceof each design to any antibody in SAbDab. All designs have a CDR edit distance> 10 from the closest example(Figure 3C, bottom). Together, these results indicate that the binders we generate are novel both by dockingpose and by CDR sequences. We evaluate diversity within generated binders by clustering them by antigen-aligned antibody RMSD (Table S2). The majority of targets with at least two de novo binders contain multiplestructural clusters, suggesting that Chai-2 explores multiple conformational states when designing successfulbinders. This range of structural diversity is qualitatively illustrated in Figure 3D.
In addition to exhibiting novelty, diversity, and high hit rates, our designed binders also exhibit high affinity.Figure 3e shows four examples of binders and their corresponding BLI curves. We assayed several of ourbinders against alternative targets to which they were not designed to bind to confirm that the high bindingaffinity is specific and not a consequence of indiscriminate binding (Table S3). We also experimentally screenfor polyreactivity (Figure S4) and computationally screen our designs for developability and immunogenicity(Figure S5). These metrics are comparable to baselines, including existing therapeutic monoclonal antibodies,suggesting that beyond high hit rates, Chai-2 designs antibodies with many desirable properties amenable forfurther lead optimization and development.
3.3 Directly encoding design criteria in generation
Recognizing that therapeutic delivery requires more than just binder identification, we designed our pipelinefor flexible prompting to address a range of design tasks. Below, we illustrate three key capabilities usingtargets that are not selected based on a training set holdout. We highlight flexible selection of antibodyformats, precise epitope targeting, and direct design of antibodies with controllable cross-reactivity profiles.
To showcase format and epitope flexibility, we design antibodies to CCL2, a target involved in cardiovaculardisease [32] and oncology [33, 34, 35]. From the same target protein, we generate VHH and scFv antibodiesfor two distinct epitopes. For each format–epitope pair, we experimentally characterize 20 designs. VHHdesigns yield 4 hits (20% hit rate) and scFv designs produce 5 hits (25% hit rate) (Figure 4a). While additionalexperiments are needed to confirm that the experimental binding sites match our in silico specifications, ourresults indicate that Chai-2 can successfully design binders in a variety of formats and follow fine-grainedinput prompts.
Chai-2 can also design antibodies targeting multiple proteins in a single design run, enabling cross-reactiveantibody engineering. This capability is particularly valuable for the development of single therapeutics thatneutralize multiple variants of disease [36], or to streamline safety evaluation in preclinical studies using an-imal models [37]. As a case study, we prompted Chai-2 with homologous human and cyno sequences for aselected target, and advanced 14 candidates for experimental validation. We identified a lead antibody withdissociation constants of 77nM and 121nM against the human and cyno targets, respectively. Notably, not allbinders had measurable binding to both homologs, suggesting that cross reactivity, in this case, is not triviallyaccomplished by targeting this epitope.
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Figure 4 Chai-2 can be steered towards key antibody engineering tasks. (a) Our design platform can use differentantibody formats (designed variable heavy in blue, designed variable light in white) when creating antibodies targetingdifferent epitopes within the same target protein (purple). These two formats (VHH and scFv) both achieve double digithit rates, and have best KD values of 82 nM and 3.3 µM, respectively (BLI curves, right). (b) Our design pipeline can alsodirectly generate cross-reactive antibodies, shown here jointly optimizing human and cyno binding. We design heavy andlight chains (blue and white, respectively) against the target (purple, cyno mutations in light blue). Both structures showthe same design in different views. Of 14 designs selected for experimental profiling, we identify one hit with nanomolaraffinities for both variants of the target (bottom table). Dashes indicate no detected binding.

4 Future Work and Limitations

We have shown extensive lab validation for binding and specificity, and are currently investing in further char-acterization of our designs. To confirm our binders target the intended epitope, further competitive bindingassays and laboratory 3D structure determination should be performed.
Wenote that all binding data collected are for scFvs andVHHs (see Section S5). The biophysical characteristics,such as affinities, of scFvs could differ from the same variable heavy and light chains reformatted as Fabs orfull-length mAbs. Although scFv binding does not always translate to Fab binding, the formats can frequentlybe interconverted, and often times the steric constraints of Fabs even increase their affinities compared toscFvs of the same VH-VL sequences[38].
In this report, we primarily focus on binding characterization. We are actively working to characterize andimprove the therapeutic properties of Chai-2 designs. For example, picomolar binders are frequently desirablefor therapeutic applications [39, 40]. Furthermore, while we approximate humanness using in silico scores,further testing is required to fully understand potential immunogenicity liabilities. In a similar vein, biophysicalassays measuring attributes such as thermal stability, aggregation propensity, and viscosity are required tovalidate that binders possess favorable profiles for downstream development. Future work will investigatemore complex formats, such as bispecifics and antibody-drug conjugates, which make up a large componentof biologics in development today.
The strong performance of Chai-2 in structure prediction – predicting 34% of antibody–antigen complexeswith DockQ > 0.8 (compared to 17% for its predecessor, Chai-1) – highlights the power of integrating high-fidelity structure prediction with generative design. As structural accuracy continues to improve, we expectthe fraction of targets tractable for computational binder design may grow proportionally. However, antibodyCDR loops still present a notable challenge due to their intrinsic conformational flexibility, whereas the relativesimplicity of modeling the α/β scaffolds of miniproteins likely underlie their comparatively higher hit ratesand affinities. We suspect that design performance strongly depends on the underlying accuracy of structurepredictions, as an incorrect atomic understanding of the problem can propagate into suboptimal choices indesign.
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5 Discussion

Chai-2 demonstrates state-of-the-art experimental success rates across diverse and challenging protein de-sign tasks. Notably, themodel achieves double-digit hit rates inwholly de novo antibody discovery acrossmorethan 50 targets and successfully generates high-affinity miniprotein binders against previously intractable tar-gets such as TNFα. Remarkably, these outcomes are achieved while requiring orders-of-magnitude fewerphysical measurements compared to existing approaches. Unlike traditional biologics discovery, which relieson extensive and often indiscriminate experimental screening, Chai-2 leverages a controllable, model-drivenframework. By evaluating only 20 antibody or nanobody designs per target, we frequently identify strongbinders within a two-week experimental cycle. Although higher affinities could likely be obtained by screeningadditional designs, our initial results indicate the potential to significantly compress discovery timelines—frommonths or years down to weeks.
The platform’s controllable and programmable design enables targeted exploration of molecular space, poten-tially unlocking modalities that elude existing techniques. In this work, we generate fully de novo designs ina single round while simultaneously optimizing epitope, scaffold, and specificity constraints. This shift fromstochastic screening to intentional, programmable discovery suggests that antigens once deemed undruggabledue to experimental challenges can potentially be addressed by in silico design. On-demand generation ofepitope-specific binders could also streamline the development of advanced therapeutic formats such as anti-body–drug conjugates, biparatopic constructs, and other multifunctional biologics. Furthermore, by reasoningat the atomic level—including ligands and post-translational modifications—Chai-2’s framework naturally ex-tends beyond conventional biologics to macrocycles, peptides, enzymes, and small molecules. Collectively,we see our results as establishing computational-first design as an integral component of modern discoveryplatforms.
The hits designed by our model not only target epitopes without existing antibody designs, but also show highdiversity in structure and sequence space. Looking ahead, we foresee a phased path to the generation of zero-shot drug candidates, where modeling of viscosity, pharmacokinetics, expression yield, and manufacturabilitycould enable simultaneous optimization of multiple important attributes.
We believe that our results point toward a transition from empirical discovery to deterministic molecular en-gineering. By coupling atomic-resolution structure prediction with generative design, we short-circuit tradi-tional discovery bottlenecks. Chai-2 marks a step toward the long-standing aspiration of rational drug design:computationally generating drug candidates that are ready for IND-enabling studies in a single shot, entirelyon the computer.
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Design target PDB ID Target chain &residues Hotspot residues Binder length Catalog item
IL-7RA [20, 28, 18] 3di3 B17–209 B58, B80, B139 40–120 Acro IL7-H52H7PD-L1 [20, 18] 5o45 A17–132 A56, A115, A123 40–120 Acro PD1-H5229InsulinR [20, 28, 18] 4zxb E6–155 E64, E88, E96 40–120 Acro INR-H52Ha
TNFα [20] 1tnf A12–157, B12–157,C12–157 A113, C73 40–120 Acro TNA-H4211
PDGFRβ [28] 3mjg C93-280 C265, C264, C210 50-120 Acro PDB-H5259
Table S1 Design targets, their PDB entries, residue ranges, hotspot residues, binder lengths ranges used in Chai-2 prompts,and catalog item used for experimental validation. All chain IDs correspond to PDB subchain label.
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Figure S5 In silico immunogenicity and developability metrics. Compared to various baselines, Chai-2’s designs exhibitsimilar developability and immunogenicity profiles. We note that all designs are displayed in these plots, regardless ofexperimental binding determination. Exact computational protocols are defined in Section S3.3.
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Format Target name # Structure clusters # Hits # Tested

scFv

CD226 2 7 19CEAM6 1 2 11CSF1 2 7 19EFNA5 3 9 19EPCR 3 3 19FGFR1 2 2 19FST 3 7 19LEP 2 7 7PARVA 2 5 12PRL 1 2 11S10A4 1 2 4SOMA 1 2 4STC2 2 2 5UBC9 1 3 9UBE2B 2 2 5

VHH

1433E 3 5 19LEP 2 4 9S100B 2 2 16S10A4 2 3 5SAE1 2 2 4STC2 2 4 8TNFL9 4 15 15VATF 2 4 9
Table S2 Structural diversity of denovo antibody binders. A listing of all targets forwhichwe have at least 2 experimentallyconfirmed antibody binders, as well as the number of structural clusters represented within those binders (binder-alignedantibody RMSD, clustered at 3Å). This clustering method primarily separates quaternary modes; there is additional diver-sity in precise CDR conformations that is not captured here. Of these 23 target-format combinations, 18 have two ormore distinct structural clusters among their binding de novo antibodies.
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Design LIF EPCR* EFNA5*

LIF design 1 9 nM n.b. n.b.LIF design 2 126 nM n.b. n.b.LIF design 3 72 nM n.b. n.b.LIF design 4 227 nM n.b. n.b.EPCR design 1 n.b. 162 nM n.b.EPCR design 2 n.b. 29 nM n.b.EPCR design 3 n.b. 27 nM n.b.EFNA5 design 1 n.b. n.b. <1 nMEFNA5 design 2 n.b. n.b. <1 nMEFNA5 design 3 n.b. n.b. <1 nMEFNA5 design 4 n.b. n.b. 16 nMEFNA5 design 5 n.b. n.b. 19 nM

(a) Binding to LIF, EPCR, and EFNA5.

Design LEP SCT2* SOMA
LEP design 1 3.5 µM n.b. n.b.LEP design 2 270 nM n.b. n.b.LEP design 3 657 nM n.b. n.b.LEP design 4 430 nM n.b. n.b.LEP design 5 1.6 µM n.b. n.b.SCT2 design 1 n.b. 1 µM n.b.SCT2 design 2v n.b. 1 µM n.b.SCT2 design 3v n.b. 1 µM n.b.SOMA design 1 n.b. n.b. 2 µMSOMA design 2 n.b. n.b. 910 nMSOMA design 3v n.b. ** 1.5 µM

(b) Binding to LEP, SCT2, and SOMA.
Table S3 Most designs show no detectable binding to off-targets. We performed on-target, off-target BLI assays on twosets of our binding-positive de novo scFvs and VHHs: (a) designs targeting LIF, EPCR, EFNA5 and (b) designs targeting LEP,SCT2, and SOMA. In each experiment, all designs were measured for binding against all three antigens. Each on-targetantigen reconfirmed positive binding signal and high affinity, whereas only 1 of the 23 designs (4%) showed binding abovebackground to any off-target antigens. A designed VHH, SOMA design 3, showed binding above background to SCT2but insufficient VHH material remained to determine the KD. Antigens were used as analyte at 5µM concentration. The
de novo scFv designs to LIF were excluded from the main benchmark as LIF has a known antibody in the PDB. (*) aviditymeasurement; (**) positive for binding, but no KD determined; (n.b.) no binding signal above background; (v) design isVHH-format, all other designs are scFv.

13



Supplemental Information

S1 Target selection

S1.1 Targets for miniprotein design

We use targets previously studied in Cao et al. [28], Watson et al. [18] and Zambaldi et al. [20], which focuson miniprotein design. We compare to experimental success rates reported in these papers. See Table S1 forexact design specifications used to produce results in Figure 2.
S1.2 Targets for de novo antibody design

We select a panel of protein targets for de novo antibody design from a catalog of proteins in stock in ContractResearch Organization (CRO) catalogs, applying the following criteria:
• The protein should not have significant homology to any antigen sequence present in SAbDab [31] re-leased prior to our models’ training date cutoff2, defined here as having at least 70% sequence identitycovering at least 80% of the query (i.e., candidate target chain(s) for de novo design) as identified by

mmseqs. By avoiding targets with high identity to solved antibody complexes, we reduce the confound-ing possibility that designs copy or adapt the structure or sequence of a known binder that might becross-reactive. We also report results for a subset of these targets with no detectable similarity even at25% identity with 25% coverage to ensure that our results are robust to targets very dissimilar to thoseseen during training.
• The antigen’s amino acid sequence should match exactly to some protein chain present in the PDB,where the chain is involved in a heteromeric interaction with another non-antibody protein chain.

For each selected target, we use an aforementioned heteromeric protein-protein binding interface to randomlysample epitope residues using a 10Å Cα-Cα distance as a cutoff. We provide a random subset of one to fourof these residues to our model to guide sampling towards a specific interaction site. Notably, this selectionprocedure does not apply any heuristics that bias towards targets that may be more suitable for antibodybinding, thus yielding a set of targets that should closely represent Chai-2’s capacity for generating bindersto a broad, unbiased set of protein targets. We select 52 targets for this benchmark.
S1.3 Antigens with known antibodies

In this manuscript, we present results for antibody designs for two antigens with known antibodies in SAbdAb:CCL2 and LIF. These targets are used for profiling Chai-2’s ability to design antibodies with controllable formatand epitope, for measuring cross-reactivity, and for assaying polyreactivity. We note that these targets areexcluded from our calculation of de novo success rates.
S2 Models and training
Chai-2 is a singular, end-to-end model for binder design. However, it incorporates several submodules thatbear functional similarities to models used in the broader field of protein design. We describe two of thesesubmodules: the design submodule Chai-2d, which is primarily responsible for proposing novel binders, andthe folding submodule Chai-2f which is responsible for assessing the proposed designs from Chai-2d.
S2.1 Design submodule

The design submodule, Chai-2d, is trained to generate one or more protein chains that bind to arbitrary, pre-specified protein targets, and can be flexibly prompted to generate different “types” of binders. Chai-2d usesan all-atom generative protein model framework [21, 42] that simultaneously designs amino acid backboneand side chain atomic structure, extending these principles to binder design. Like the Chai-2f folding model,Chai-2d is not trained on structural data released after a temporal cutoff of 2021-9-30. Furthermore, Chai-2d
2SAbDab identifiers referencing obsolete PDB identifiers are assumed to be have been released prior to training date cutoff for sim-plicity and caution.
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is not trained on any structure having one or more protein chains with greater than 70% identity (and 80%coverage) to the targets reserved for design experiments. We identified such chains usingmmseqs easy-search[43].
S2.2 Folding submodule architecture and training

Chai-2f follows a similar architecture as Chai-1 [12], similarly leveraging protein language model embeddings[44, 45, 46], multiple sequence alignments, and template information to predict structures. Like Chai-1, Chai-2f supports a variety of auxiliary restraint inputs that serve as additional conditioning information during thefolding process.
Chai-2f is trained on synthetically predicted structures and the PDB [27]. PDB structures are subject to a datecutoff of 2021-9-30 (exclusive). We retain the data clustering and filtering strategies used to train Chai-1.
S3 Metrics for designed antibody binders

S3.1 Sequence and structure novelty with respect to known antibodies

We evaluate the novelty of our designs by comparing to all antibody-antigen complexes in the PDB. Forsequence novelty, we compute the minimum edit distance over concatenated CDRs between each design andall antibodies in the PDB. For structure novelty, we use a two step process where we first search for similarantigens in the PDB, then compare our designed structures to all retrieved antibody-antigen complexes. Tomaximize recall, we run antigen search using both structure and sequence based similarity. We use foldseek
easy-search [47] with a TM score threshold of 0.5 and RMSD threshold of 5.0Å to find structurally similarmatches, and mmseqs easy-search [43] with parameters –min-seq-id 0.70 -c 0.25 –e-profile 1e-3 –cov-mode
1 to find similar matches in sequence space3. For each design, we compute the antigen-aligned alpha carbon(Cα) RMSD of the heavy chain framework with respect to all retrieved structures, and report the RMSD of theclosest hit. Alignment and RMSD values are computed with CEAlign [48] to handle variable length chains.
S3.2 Structure diversity within generated designs

Structural diversity of generated designs is computed within experimentally verified binders for a given targetand of a given format. All such designs are aligned on the predicted folded structure of target chains, and wecomputeCαRMSD for all designed (antibody) chains. Note that unlike structural novelty, this computes RMSDacross all residues and not just framework residues, such that the resulting distance metric includes conforma-tional differences in CDR loop regions. This is done between each pair of designs, yielding a pairwise distancematrix that is then clustered with agglomerative clustering with mean linkage. Note that despite includingCDRs in the calculation, the dominant contributor to target-aligned antibody RMSD is the ligand’s high-levelplacement and orientation relative to the target. Therefore this procedure primarily separates designs basedon quaternary structure; there is additional structural diversity in fine-grained CDR loop conformations thatis not captured by this calculation.
S3.3 Immunogenicity and Developability

Humanness of designswas evaluated using thepromb package (https://github.com/MSDLLCpapers/promb)following methodology proposed in BioPhi [49]. Chemical liability risk sites were identified following the ap-proach of Satława et al. [50], with two modifications: only high-severity liabilities were included, and regionscontaining three consecutive hydrophobic residues were also classified as liabilities. Hydrophobic patches(PSH) and charged patches score (sum of patches of positive/negative charge) were implemented accordingto Raybould et al. [51].
To establish a baseline for which we can compare our designs, we consider the following controls: approvedmAbs from Thera-SAbDab [52], randomly sampled antibodies from Paired OAS [53], and different groupsfrom the “217 Immunogenicity” dataset from Prihoda et al. [49] (originally curated in Marks et al. [54]).

3This uses a more permissive coverage cutoff of 25% with respect to the target compared to how we identified de novo targets.
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Model Trunk samples Diffusion samples Models Seeds RecyclesChai-1 5 5 - - 3Chai-2f / Chai-1.5f 5 5 - - 10AlphaFold 2.3 multimer - - 5 5 3
Table S4 Folding model inference settings. All other settings are kept at default values. We run multiple AlphaFold2.3 models, each with different seeds to mimic the trunk and diffusion sampling strategy more common in recent foldingmodels. We use 3 recycles according to the ColabFold implementation, and do not expect a significant change if more areused.

S4 Folding model evaluation on antibody-antigen complexes
We benchmark the following folding models, all of which were the latest versions available as of June 17,2025.

• Chai-1 [12] https://github.com/chaidiscovery/chai-lab, commit SHA 103dc24

• AlphaFold 2.3 multimer via ColabFold [55, 56] https://github.com/sokrypton/ColabFold, using theauthors’ pre-built docker image at ghcr.io/sokrypton/colabfold:1.5.5-cuda12.2.2

All Chai models were provided with the sameMSAs generated bymmseqs easy-search run against uniref2302and colabfold_envdb_202108 databases as provided by the ColabFold project https://colabfold.mmseqs.
com [56]. When provided, templates are obtained running mmseqs easy-search against the pdb100_230517database, and are subject to a 95% sequence identity filter to exclude exact hits. AlphaFold2.3 was run viaColabfold [56] with server-provided MSAs and templates (when enabled). During this evaluation, we foundthat Colabfold’s server templates can sometimes contain an exact match for the protein chain being foldedand so AF2.3 can have access to additional information that Chai models do not have. We are unable tobenchmark AlphaFold3 due to licensing restrictions. All models were run with settings listed in table S4.
We adopt DockQ [57, 58] as our primary evaluation metric, using the official implementation (https://github.
com/bjornwallner/DockQ, version 2.1.1). We fold each complex with all chains present, then calculateDockQ specifically between the low homology interfaces in our evaluation set (see below). We follow stan-dard values for thresholding DockQ values into successful (≥ 0.23), medium (≥ 0.49), and high (≥ 0.80) qualitypredictions. We consider performance in the DockQ high range to indicate predictions near experimentalaccuracy, these generally require predictions to have sub-angstrom RMSD accuracy at the binding interface.
We conduct an antibody-focused evaluation of folding models by using the low-homology evaluation set pre-viously presented in Chai-1 [12], but keeping only examples that overlap SAbDab [31], contain an antibody-antigen interface as annotated by ANARCI [59], do not contain DNA or RNA chains (for comparability toAlphaFold 2.3 multimer), and do not exceed 1024 tokens in length. This yields 152 complexes with 255 lowhomology interfaces, with release dates spanning 2022-05-11 to 2023-01-11. On these low homology anti-body antigen interfaces, we find that our folding models have consistently and meaningfully improved on thisdifficult task. Compared to Chai-1, which was released less than a year ago, Chai-2 doubles the rate at whichinterfaces are predicted at experimental accuracy (i.e., DockQ exceeding 0.8, Figure S1). The performancedelta increases to three-fold when templates are not provided to either Chai or AlphaFold models (Figure S2).We further note that when epitope restraints are provided – as often is the case for design, as we know theepitope a priori – there is a dramatic increase in DockQ success rates, with the rate of structures predictedwith experimental accuracy increasing to above 40% with templates, or 32% without.
S5 Experimental Methods

S5.1 Protein production

Each design sequence has a C-terminal purification tag added andwas reverse-translated toDNA sequence bya codon optimization algorithm for high production in E. coli. The sequencewas synthesized as gene fragments,cloned into expression vector, and expressed in an E. coli-based in vitro transcription–translation system.
Minibinders Miniproteins used a Twin-Strep tag and were expressed in 8µL volume at 37◦C for 12 hours.
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Miniprotein concentration was quantified using a tag-specific fluorescence assay, each concentration wasnormalized, and the protein was purified by direct capture and washing on the streptavidin-coated BLI probe.
Antibodies and nanobodies scFvs and VHHs used 10xHis tag and were expressed in 1mL volume at 30◦C for3 hours. The reactions were centrifuged at 18,000 x g and 4 °C for 10min. Supernatent was collected andpurified by Ni column. Concentrations were determined by OD280 measurement and purity was confirmedby Coomassie blue-stained SDS-PAGE gel under reducing conditions.
S5.2 Binding by Bio-Layer Interferometry (BLI)

Minibinders Multi-cycle kinetic assays were conducted by BLI (Gator Bio). The designs were immobilized onstreptavidin-coated probes via the Twin-Strep tag. Target protein solutions at 1000, 316.2, 100, 32.2, and 0nM were flowed over the probes, with signal acquisition at a sampling rate of 5 Hz. The BLI assay sequencewas as follows: 120s baseline, 120s ligand loading, 200s post-loading baseline, 220s association phase, 240sdissociation phase, and 75s regeneration. Measurements were made at 25◦C with 50 mM HEPES, 100 mMNaCl, and 0.5% Triton X-100 as kinetic buffer. Negative controls, including buffer-only samples, were includedfor baseline subtraction. Data was fit globally to a 1:1 bindingmodel across all concentrations to obtain affinityconstants (KD).
Antibodies and nanobodies Multi-cycle kinetic assays were conducted by BLI (Octet RED384). Generally, thedesigned scFvs / VHHs were immobilized on HIS1K (anti-penta-HIS) probes via the His tag, and target was ap-plied as analyte. A subset of targets (1433B, CALR, CEACAM-6, CRTAM, FCGR3B, NTF3, ONCM, PRL, S100B,andUNG)were instead immobilized on SA sensor and designswere analyte. For the binding hit screen, 1-pointBLI was performed with either 5µMor 10µManalyte. ForKDdetermination 4- to 7-point series of 2- or 3-folddilutions were performed. Signal acquisition used a sampling rate of 5 Hz. The BLI assay sequence was asfollows: 60s baseline, 300s ligand loading, 100s post-loading baseline, 120s association phase, 180s dissocia-tion phase, and 30s regeneration. As necessary the association and dissociation phases were extended up toa maximum of 300s each to allow for adequate saturation or dissociation. Measurements were made at 25◦C,with 10 mM Na2HPO4·12H2O, 2 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, 0.05% Tween-20, 0.1%BSApH7.4 (PBST+0.1%BSA) as kinetic buffer. Negative controls, including buffer-only samples, were included forbaseline subtraction. Data was fit globally to either a 1:1 or 1:2 binding model across all concentrations toobtain KD.
Across all formats, designs with binding-positive curve signature, signal greater than 300% of the negativebackground signal, and signal greater than 0.1nm above background were classified as positive hits. KDvaluesin this report were all obtained from fits with R2 > 0.98. Positive controls with known affinity were includedfor all targets for assay validation. A list of all BLI target materials can be found in Table S5.
S5.3 Polyreactivity assays

ELISA for polyreactivity to BVP was performed as described in Jain et al. [60]. Sample concentration was3.5µM for scFvs and 1µM for Ixekizumab (MedChem #HY-P9924), Visilizumab (MedChem #HY-P99332),and Trastuzumab (MedChem #HY-P9907). ELISA for polyreactivity to ssDNA, dsDNA, insulin, LPS and HSAwas performed as described in Mouquet et al. [61]. ssDNA (Sigma #D8899), dsDNA (Sigma #D4522), insulin(Yeasen #40112ES80), LPS (Yeasen #60747ES08) and HSA (Sino #10968-HNAY) were coated at 1µg/mL.Sample concentration was 10µg/mL for all test articles. In both assays, 0.15 µg/mL anti-His/HRP was usedto detect His-tagged scFv and 0.08 µg/mL anti-huIgG/HRP was used to detect control antibodies. PlottedOD450 values are the average of two replicates with blank subtracted.
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Target Catalog item
1433B Sino 10843-H09E-B1433E Sino 50691-M09EAHSP Sino 14391-HNAEAMBP Sino 13141-H05H1CALR Sino 13539-H02HCD226 Sino 10565-H02HCEAM6 Sino 10823-H08H-BCRTAM Sino 11975-H08H-BCSF1 Sino 11792-H02HDAF Sino 10101-H02HEFNA1 Sino 10882-H02HEFNA5 Sino 10192-H02HEFNB2 Sino 10881-HCCHEPCR Sino 13320-H02HFCG3B Sino 11046-H27H-BFGFR1 Sino 10616-H02HFST Sino 10685-H02HHDAC8 Sino 10864-H09BIL1R1 Sino 10126-H02HIL20 Sino 13060-HNAEIL3 Sino 11858-HNAELEP Sino 10221-HNAEMK08 Sino 10795-H09BMMP2 Sino 10082-HNAHNECT1 Sino 11611-H02HNTF3 Sino 10286-HNAE-BNTM1A Sino 11222-HNCEONCM Sino 50112-MNAE-BPARVA Sino 13919-H09EPD1L2 Sino 10292-H02HPIN1 Sino 10282-HNCEPRL Sino 10275-HNAE-BPTN2 Sino 10570-HNCBRNF43 Sino 16108-H02HRSPO1 Sino 11083-HNASS100B Sino 10181-H01H-BS10A4 Sino 10185-H01HSAE1 Sino 13921-HNCBSOMA Sino 16122-HNCESORCN Sino 14547-HNCBSTC2 Sino 13653-H02HSYUA Sino 12093-HNAETACT Sino 11202-H08H-BTF65 Sino 12054-H09ETNFL4 Sino 13127-H04HTNFL9 Sino 15693-H01HUBC9 Sino 13205-HNCEUBE2B Sino 51243-MNCEUBP7 Sino 11681-HNCBUNG Sino 12939-H09E-BVATF Sino 15605-H09EXIAP Sino 10606-H17E

Table S5 Target material for each antigen used in wet-lab experiments.
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